o
    pf!!                     @  sd  d Z ddlmZ ddlZddlZddlZddlmZm	Z	 ddlm
Z
mZmZ ddlmZmZmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZmZmZ ddlm Z  ddl!m"Z" ddl#m$Z$ ddl%m&Z& ddl'm(Z( ddl)m*Z* ej+rddl,m-Z- G dd dej.Z/G dd de/ej.Z0neZ1d/d0d d!Z2d"d#d1d)d*Z3d2d-d.Z4dS )3z0Private logic for creating pydantic dataclasses.    )annotationsN)partialwraps)AnyCallableClassVar)
ArgsKwargsSchemaSerializerSchemaValidatorcore_schema)	TypeGuard   )PydanticUndefinedAnnotation)	FieldInfo)create_schema_validator)PydanticDeprecatedSince20   )_config_decorators_typing_extra)collect_dataclass_fields)GenerateSchema)get_standard_typevars_map)set_dataclass_mocks)CallbackGetCoreSchemaHandler)generate_pydantic_signature)
ConfigDictc                   @  s0   e Zd ZU ded< ded< ded< dddZdS )StandardDataclasszClassVar[dict[str, Any]]__dataclass_fields__zClassVar[Any]__dataclass_params__zClassVar[Callable[..., None]]__post_init__argsobjectkwargsreturnNonec                 O  s   d S N )selfr!   r#   r'   r'   X/home/ertert/spirit/venv/lib/python3.10/site-packages/pydantic/_internal/_dataclasses.py__init__&   s   zStandardDataclass.__init__N)r!   r"   r#   r"   r$   r%   )__name__
__module____qualname____annotations__r*   r'   r'   r'   r)   r   !   s
   
 r   c                   @  sJ   e Zd ZU dZded< ded< ded< ded	< d
ed< ded< ded< dS )PydanticDataclassai  A protocol containing attributes only available once a class has been decorated as a Pydantic dataclass.

        Attributes:
            __pydantic_config__: Pydantic-specific configuration settings for the dataclass.
            __pydantic_complete__: Whether dataclass building is completed, or if there are still undefined fields.
            __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
            __pydantic_decorators__: Metadata containing the decorators defined on the dataclass.
            __pydantic_fields__: Metadata about the fields defined on the dataclass.
            __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the dataclass.
            __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the dataclass.
        zClassVar[ConfigDict]__pydantic_config__zClassVar[bool]__pydantic_complete__z ClassVar[core_schema.CoreSchema]__pydantic_core_schema__z$ClassVar[_decorators.DecoratorInfos]__pydantic_decorators__zClassVar[dict[str, FieldInfo]]__pydantic_fields__zClassVar[SchemaSerializer]__pydantic_serializer__zClassVar[SchemaValidator]__pydantic_validator__N)r+   r,   r-   __doc__r.   r'   r'   r'   r)   r/   )   s   
 r/   clstype[StandardDataclass]types_namespacedict[str, Any] | Noner$   r%   c                 C  s    t | }t| ||d}|| _dS )zCollect and set `cls.__pydantic_fields__`.

    Args:
        cls: The class.
        types_namespace: The types namespace, defaults to `None`.
    )typevars_mapN)r   r   r4   )r8   r:   r<   fieldsr'   r'   r)   set_dataclass_fieldsD   s   
r>   T)raise_errors	type[Any]config_wrapper_config.ConfigWrapperr?   boolc             
     s  t | drtdt |du rt| }t| | t| }t|||}t	| j
| j|dd}ddd}| j d|_|| _
|j| _|| _t| dd}z|r\|| tt|jdd|dd}	n|j| dd}	W n" ty }
 z|ro t| | jd|
j d W Y d}
~
dS d}
~
ww || }z||	}	W n |jy   t| | jd Y dS w td| } |	| _t|	| | j| jd||j  | _! t"|	|| _#|j$rt%| j&d  fdd}|'d| | _&dS )!a  Finish building a pydantic dataclass.

    This logic is called on a class which has already been wrapped in `dataclasses.dataclass()`.

    This is somewhat analogous to `pydantic._internal._model_construction.complete_model_class`.

    Args:
        cls: The class.
        config_wrapper: The config wrapper instance.
        raise_errors: Whether to raise errors, defaults to `True`.
        types_namespace: The types namespace.

    Returns:
        `True` if building a pydantic dataclass is successfully completed, `False` otherwise.

    Raises:
        PydanticUndefinedAnnotation: If `raise_error` is `True` and there is an undefined annotations.
    __post_init_post_parse__zVSupport for `__post_init_post_parse__` has been dropped, the method will not be calledNT)initr=   rA   is_dataclass__dataclass_self__r/   r!   r   r#   r$   r%   c                 _  s"   d}| }|j jt|||d d S )NT)self_instance)r6   validate_pythonr   )rG   r!   r#   __tracebackhide__sr'   r'   r)   r*      s   z$complete_dataclass.<locals>.__init__z	.__init____get_pydantic_core_schema__F)from_dunder_get_core_schemaunpack)ref_mode`zall referenced typesztype[PydanticDataclass]	dataclassinstance__fieldstr__valuec                   s     | || d S r&   )validate_assignment)rR   rS   rU   	validatorr'   r)   validated_setattr   s   z-complete_dataclass.<locals>.validated_setattr)rG   r/   r!   r   r#   r   r$   r%   )rR   r   rS   rT   rU   rT   r$   r%   )(hasattrwarningswarnDeprecationWarningr   get_cls_types_namespacer>   r   r   r   r*   r4   r-   config_dictr0   __signature__getattrr   r   generate_schemar   r   r+   namecore_configclean_schemaCollectedInvalidtypingcastr2   r   r,   plugin_settingsr6   r	   r5   rV   r   __setattr____get__)r8   rA   r?   r:   r<   
gen_schemasigr*   get_core_schemaschemaerd   rY   r'   rW   r)   complete_dataclassQ   s|   



	

rq   _cls"TypeGuard[type[StandardDataclass]]c                 C  s2   t | ot| d ot| jtt| di S )a>  Returns True if a class is a stdlib dataclass and *not* a pydantic dataclass.

    We check that
    - `_cls` is a dataclass
    - `_cls` does not inherit from a processed pydantic dataclass (and thus have a `__pydantic_validator__`)
    - `_cls` does not have any annotations that are not dataclass fields
    e.g.
    ```py
    import dataclasses

    import pydantic.dataclasses

    @dataclasses.dataclass
    class A:
        x: int

    @pydantic.dataclasses.dataclass
    class B(A):
        y: int
    ```
    In this case, when we first check `B`, we make an extra check and look at the annotations ('y'),
    which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x')

    Args:
        cls: The class.

    Returns:
        `True` if the class is a stdlib dataclass, `False` otherwise.
    r6   r.   )dataclassesrF   rZ   setr   
issupersetra   )rr   r'   r'   r)   is_builtin_dataclass   s
   

rw   r&   )r8   r9   r:   r;   r$   r%   )
r8   r@   rA   rB   r?   rC   r:   r;   r$   rC   )rr   r@   r$   rs   )5r7   
__future__r   _annotationsrt   rg   r[   	functoolsr   r   r   r   r   pydantic_corer   r	   r
   r   typing_extensionsr   errorsr   r=   r   plugin._schema_validatorr   r    r   r   r   _fieldsr   _generate_schemar   	_genericsr   _mock_val_serr   _schema_generation_sharedr   
_signaturer   TYPE_CHECKINGconfigr   Protocolr   r/   r]   r>   rq   rw   r'   r'   r'   r)   <module>   s:    n